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The conditions under which the three forms of Hamilton’s variational pric - 
ciple were derived for nonholonomic systems by Holder [ 11, Voronets [ 2 1, 
and Suslov [ 3 ] are analyzed in the general case of nonlinear and, also, in 
particular cases of linear relationships. It is shown that these three forms are 
equivalent and transformable into one another. Gererally Hamilton ‘s prin - 
ciple in relation to nonholonomic systems is not the principle of stationary 

action. although under specific conditions of real motion of such systems it 
can be found among solutions of Euler’s equations of the Lagrange variational 
problem. The conditions under which Hamilton’s principle applied to related 

motions of a nonholonomic system has the characteristics of the principle of 

stationary motion are derived. This is closely related to the question of ap - 

plicability to nonholonomic systems of the generalized Hamilton -Jacobi 
method of integrating the equations of motion [ 41. The necessary and suf - 
ficient conditions of that method applicability to nonholonomic systems have 
been found to be equivalent to the conditions noted above [ 5 1. It is shown 
that the method is applicable then and only then when Hamilton’s principle 
can be treated as the principle of stationary action. Examples are presented. 

1. Let us consider a system of material points whose independent Lagrangian co - 
ordinates we denote by Qi (i = 1,. . . , n). Let the system be subjected to forces 

defined by the force function u (qi, t), and constrained by ideal nonintegrable 
relationships of the form 

ff(qf, Qi’, t) = 0 (1=1,..., r<n) (1.1) 

which are generally nonlinear with respect to the generalized velocities Qi’ ~ dgi / 

dt (i = 1, . . ., n) where t denotes time. Relationships (1.1) are assumed inde - 

pendent, hence 

rank (1.2) 

Equations (1.1) with conditions (1.2) can be solved for some r dependent velo - 
cities and represented, for Instance, in the form 

ff (qfy Qi’7 t) = Q’k+l- ‘pf (41, . . *, qn, q;, . . ., qr’, t> = 0 
(1.3) 

where the velocities Qs’ (S = 1, . . l 9 k = n - r) are assumed independent. 

We write the general equation of dynamics which defines the d ’ Alambert - Lagrange 

principle as 

407 
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n 

(1.4) 

where L (9, (7.9 t> = T i- U is the Lagrange function, T (4, 9-T t) is the kinetic 
energy, and 6qi are possible (virtual) displacements that satisfy Chetaev: conditions 

n af c $Aqi=o (Z=l,...,r) 

i=l 
z 

For relationships of the form (1.3) these conditions are of the form 

&k+l = 

(1.5) 

(1.6) 

Hamilton’s principle can be obtained by integrating Eq. (1.4) with respect to t 
within some constant limits ta and t, 

on the assumption that the belonging to class Cs functions 6% satisfy conditions 

Sq, = 0 for t = t,, t, (i = 1,. . ., 12) 

Integrating in the preceding equality by parts the terms of the form 

(1.7) 

d .2&_ 69, 
dt c3qi 

with allowance for conditions (1.7 ) we reduce that equality to 

(1.8) 

in which, unlike in (1.4 ) , we have the time derivatives of coordinate variations con - 
strained by conditions (1.5). Since the latter do not uniquely define 8qi, there exists 
evidently some arbitrariness in the determination of derivatives of &I r. Two equiva- 
lent points of view exist in analytic mechanics on the relation of these derivatives with 
variations 69, of generalized velocities [ 6 1. 

According fo the first which belongs to Holder [l] and is based on rules of the cal- 
culus of variation the following commutation relationships 

$8qi = 6qi’ (i = I, . .I n) (1.0) 

are valid for all coordinates. With this definition of 6qr’ the variation of functions 
(1.1) over possible permutations, with (1.5) taken into account, are of the form 
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If formulas (1.1) are integrable, expressions (1.10 1 are identically zero, and if 
they are not integrable then, although not identically zero, they may, if they are non- 
linear, become zero on the strength of the system equations of motion [ 7 3. 

Note that the identities 

Sfl = 0 (t=I,.*.,r) (1.11) 

and condi~~l, 9) are compatible when Eqs. (1.1) are integrabIe ) i. e. in the case 
of holonomic systems. 

For relationships of the form (1.3 ) formulas (1.10 ) assume the form 

aft = tjf_~~+~ - &pr = 5 AYW, (I = 1,. . ., r) 
C?=t 

(1.12) 

where allowance is made for equalitites (1.6 ) and the following notation is used: 

(1.13) 

When by virtue of the elation of motion of a nonho~omic system Sir = 0, 
then, as implied by (1.121, all Ask+’ = 0 (S = 1, - * -7 k)t and vice versa. 

According to the second point of view propounded by Appel and Suslov ; 3 I the 
identities (1.11) are valid, and this implies that formulas (1.9) are only valid for the 
independent velocities 

$&a = &q,’ (s = 1, . . ., k) (1.14) 

Expressions for the variation of dependent velocities %c+z’ (I = 1+ + l - 7 I”)? de - 
fined by Eqs. (1.3 ) are obtained from conditions (1.11) in the form of equalities 

from which, taking into account formutas (1.6 ) and (1.13 1, we have [ 7 ] 
k 

-$&$k+l - &wl = 
c 

A,k+%q, (I = 1,. . ., r) 
a-1 

(1.15) 

where the symbol s denotes the variation in the Appel - Suslov meaning of the 
function which contains dependent velocities. 

Note that when on the strength of equations of motion of a nonholonomic system 
aII Ask+* = 0 (S = 1,. . ., 4, then the equality deqk+l/dt = %k+r’, is im - 
plied by (1.15 f and vice versa, Hence when the validity of equalities (1.11) or, what 
is the same, equalities _~$,g+r = 0 (S == 1, _ . . , &, 2 = 1,. . . , r) is implied by 
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the equations of motion, then in both variational methods formulas (1.9 1 hold for all 
coordina~ . 

Note that in the case of linear relationships (I. 3 ) when 

cpl(4, 4’, t) - i al,, (ir. t) ‘I,’ + al (ql t) 
SL31 

(1.16) 

the coefficients in (1.13 ) are of the form [ 2 1 

and the right-hand of equality (1.15 ) can be represented in the form E3 1 

Example 1.1. In Appel *s example the nonlinear relationship is represented by 

the equation 

Assuming that conditions (1. 9) hold for all i = 1, 2, 3, in comformity with 

(1.10 ) we have 

-- 6% 

If * on tie other hand a conditions (1.14 ) are assumed valid for alt s f 1, 2 and 

8f = 0, then in conformity with (1.15) we have 

$ Sq3 - Xq,’ = _+ a 

i, e. 

Example 1.2. For a disk of radius a rolling over a rough horizontal plane the 
equations of nonholonomic relationships are of the form 

fr (rp, z*,+*) = 2’ .+. II cos r+q:' = 0, fi (q, y',*,') = ?I' -i- a sin v#' ==O 

When conditions (1.9) hold for all coordinates 2, y, rp, tr, I+, then 

I?$ = a sin ‘p ((p’&# - $‘6~), isfa = Q cos ‘p ($‘6q - (p-w) 

If conditions (1.14) are satisfied for ct~ = 8, q2 = $, and q3 == q~ and condition 
(1.11) hold, then in comformity with (1.13 ) we have 

$6x --. &z*= a sin cp (cp’b$ -- $‘Kq), 

a co9 q (q3.Q - cp’fi$) 
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i.e. for Q4 = 5 and 96 = y the coefficients in (1.13 ) are 

A14 = A16 = 0, As4 = a sin (p’p’, A34 = -a sin cp$‘, 

Asa= -acoscprp’, As’!= acoscpllj’ 

2. Let us now consider the form of Hamilton ‘s principle for nonholonomic systems 
obtained in comformity with one or the other of the described above points of view on 
the relation between variations of velocities and of coordinate derivatives. 

Let the commutation relationships (1.9) be satisfied for all coordinates. Substitut- 

ing (1.9 ) into formula (1.8 ) we obtain the Holder form [ 11 of Hamilton ‘s principle [ 7 ] 

11 

s l3Ldt= 0 (2.1) 

to 

In that variational principle we compare positions of the system on the actual tra- 

jectory 9i (t} with the simultaneous position obtained by moving from real motion 

positions by the possible displacement 6qi which define the momentarily fixed con- 

figuration of the system. The sequence of displaced positions qi (t)i- 6qf may be 

considered an alternate or roundabout path which generally does not satisfy Eqs. (1.1) . 
Indeed, if the alternate path satisfies Eqs. (1.1). the equalities 

fr (4 + MY Q’ i- W, t) = fl (q, q’, t) + 

hold. From these equalities follow equalities (1. 11) that are accurate to smalls of the 
first order. But these conditions are not satisfied , hence Hamilton ‘s principle (2. 1) 
does not generally represent the principle of stationary action [ 8 ] 

t1 

6lLdt=O 
to 

(2.2) 

as is the case of holonomic systems. 
The equations of motion of nonholonomic systems are derived from Hamilton ‘s 

principle (2.1) , for example, in the form of Lagrange equations with coefficients ~1 1 

T 

d aL aL 1 aft 
-7--z 

dt aqi aVi L Plagi' (i = 1, . . ., II) 

t-=1 

(2.3) 

which with Eqs. (1.1) form a closed system of n Jr r equations with the same num- 

ber of unknowns. Note that using Eqs. (1.1) it is possible to define the Lagrange mul- 

tipliers as functions PI hi, qi’, t), whose substitution into Eqs. (2.3) yields a system 

of equations each of which is of the second order with respect to qi. The general 

solution of that equation depends on the 2fi arbitrary constants. Since Eqs . (1.1) 
must also be satisfied, the number of arbitrary constants in the general solution of Eqs. 

(2.3) is 2n - r. These constants can be expressed in terms of initial data 

Qi = CliO7 qi’ = qio-, t = to (2.4) 
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by arbitrarily specifying ?z 
and the n - r numbers 
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numbers Qia 
4ii 

that determine the position of initial points 
which with Sqs. (1.1) determine the initial velocity, 

From this, incidentally, follows the actual property of actual trajectory of a nonholo - 
nomic system that it cannot pass through two arbitrarily specified points of space. If 
the initial point Qi0 (i = 1, . . . , n) is fixed, the second point position cannot be 

arbitrarily specified, and it must be on a manifijld of n - r dimensions, which can 
be dynamically reached from the specified configuration, while the set of configurations, 

kinematically attainable from the specified configuration, is in this case of linear re - 

lationships of dimension n [8 1. 
Let us clarify the relation between principle (2.1) and the variational principle 

\[B(@+Li)+ $+& (dQk+l --8q,) 
1 

at = 0 (2.5) 
to 

used.by Voronets in [ 2 ] with conditions (1.9) as one of the methods of deriving his 
equations of motion for nonholonomic systems of the form 

d 133 a(e4-v 
$tYg=-- 34, = 

(2.6 1 

established by him in the case of linear relationships. In that equation @ (ql, . . . , 

qn7 P,‘, . . *, qlc’, t) is the kinetic energy of system 2’ (q, q’, t) from which the 

dependent velocities have been eliminated using formulas il.3 ) . Since the equalities 

ae -=-$+&Z-$ 
% 

(s = 1, . . .) k) 

1=1 

(2.7 1 

(i = I,. . . n) 

are valid, the relation C 6 1 

obtained without the use of conditions (1.6 ) , is also valid. Substituting the right-hand 
side of equality (2.8 ) for the quantity 6 T, appearing in 6L = 6 T + 6u, into 

expression (2. l), we obtain formula (2.5) which in essence is Voronets ’ form of 
Hamilton ‘s principle for nonholonomic systems. Principle (2.5 ) was neither substantiated 
nor named in [ 2 1. 

Note that each of Voronets * equations (2.6) is a second order differential equation 
and that they are complemented by Eqs. (1.3 ) of the first order. Hence the general 

solution of the system of Eqs. (2.6 ) and (1.3 ) , as well as the general solution of system 
(2.3 ) , (1.1) depend on 2k + P = 2n - r arbitrary constants. 

We now substitute expressions (1.14) and (1.15 ) into formula (1.8 ) and, after in- 
tegration by parts with allowance for conditions (1.7 ) , obtain Hamilton ‘s principle in 

Soslov ‘s form [ 7 ] 
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(2.9) 

This formula was derived by Suslov for the case of linear relationships of the form 
(1.3 ), (1.16 ) and called the modification of the d ‘Alambert principle. He had stressed 

that “it in no way represents Hamilton ‘s principle ” [ 3 1, apparently meaning the prin- 
ciple of stationary action. 

When comparing formulas (2.9) and (2.1) it should be borne in mind that .the 

variations of Lagrange functions in these are calculated differently: in (2. 1) allowance 

is made for equalities (1.9) and in (2.9) for equalities (1.14) and (1.15). Note also 
that since in the considered method of variation, conditions (1.11) are satisfied , the 

alternate paths Qi (t) + 6qi in the case of (2.9) satisfy in the first approximation the 

conditions (1.3 ) . 
Finally, we point out that, if formula (2,8 ) in which, in conformity with Suslov ‘s 

method of variation , it is now necessary to take into account equalities ( 1.11) and 

(1.3 ) , which reduces it to the form &T = 60, then formula (2.9 ) assumes the form 

(2.10) 

which with equalities (1.12 ) taken into account evidently represents Hamilton ‘s prin- 
ciple in Suslov ‘s form (2.5). We recall that Suslov had stated that “that formula (2.9) 

(in a somewhat different form), . . was indicated by P. V. Voronets ” I: 3 1. 
It has been thus shown that formulas (2.1), (2.5 ) , (2.9), and (2.10 ) that define 

Hamilton’s principle for nonholonomic systems constrained by (1.3 ) are equivalent and 
convert to one another by means of transformations (2.8 ) and (1.12 ) with allowance 

for the relation equations and the method of variation. 

Example 2.1. In Appel’s example 

L = T (q1.2 + Q2’2-t %‘a) - mgqa 

8 + U = m (1 -+ a2) 
2 

(qr’*+ q2’a) - mgq3 

-fj$ (hq,’ - W) = ma vqla2 + q22 (6q,’ - a6 1/q,‘* f qTA) 

2 2 
aT 

c 
AssSq, = ma2 Vqlea + q2’2 

d 

c t 
q,’ 

aQ3’ 1 -x 1/q1*2+ q2” 
6qs 

s=1 3=1 

It is seen that the relationships corresponding to formulas (2.1) , (2.5 ) , (2.9)) and 
(2.10) defining Hamilton’s principle convert to one another when the relation equation 
and the evident equalities 

q1’6q,’ + q2’8q2’ = v q1’2 + 42’” 6 Jfq1.2 + qa’“, V41VG + qn’L hq.3 = 

= (q,‘Sq,’ + q2’6q2’) 

are taken into account. 
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3, Let us compare Hamilton ‘s principle (2.1) with the Lagrange problem of sta - 
tionary value of the action integral (Z-2 f in the class of curves that satisfy Eqs. f 1. 1 f. 
The introduction of indeterminate multipliers xr (t) reduces that problem of condi - 
tional extremum ot the problem of variations [ 91 

The equation of Euler for problem (3.1) 

(3.1) 

(3.2 ) 

is a second order differential equation in qf and of first order in Xi* If Eqs. (1.1) 
are nonintegrable, the general solution of Eqs. (3.2 ) and (1.1) depends on 2n arbitrary 

constants, hence the equations of motion (2.3 ) and (1.1) in the case of a nonholonomtc 

system are not equivalent to Eqs. (3.2) and (1.1) of the variational problem (3.1) 
[ lo,11 1, The nonequivalence of these two systems of equations does not, however, ex- 

clude the ~ossibi~~ of some of their solutions being the same. 

Let the general or some particular solution qi (t) of Eqs. (2.3 ) and (1.1) be also 
the solution of Eqs. (3.2 ) and (1.1) for the same initial conditions (2.4) .The equalities 

c (Pr +4,$- = pz($--g$” 1 (i = 1, . _ ., n) (3.3) 

I i I 

are now evidently valid. 
Taking into account (I.. 5 ) we multiply Eqs. (3.3) by the possible permutations of 

hi and summating over all i’s, we obtain the condition 

which is necessary if the two systems are to have the same solution qi(t). This con- 

dition is also sufficient, To prove this, let us assume that some solution of Eqs. (3.2 ) 

and (1.1) satisfies condition (3.4) for any 6qi compatible with conditions (1.5 ). 

Multiplying Eqs. (3.2 ) by possible permutations of &qi and Eqs = (1.5 ) by the indeter - 
minate multiplie~~z! and summating over all i’s and t’s with allowance for (3.4 > and 
(1.5 ) we obtain the relationship 

which shows that the considered solution qi(t) also satisfies Eqs. (2.3 ) and (1,1), 
Thus condition (3.4) is necessary and sufficient for solution qi (t) of Eqs. (2.3 ) 

and (1-l) to be among solutions of Eqs. (3.2) and (1.1) f5]. 
Note that equalities (3.3 ) follow from condition (3.4). This can be proved by 

multiplying conditions (1.5 ) by multipliers Pl + x2 where fl, are the indeter - 
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minate multipliers, then summating over all 1 ’ s , subtracting from (3.4 ) and reducing 

to zero the coefficients at dependent variations by suitable selection of multipliers P I. 

As the result we obtain the equalities (3.3 ), 
Thus, when conditions (3.4) are satisfied , the equations of motion (2.3 ) of a non- 

holonomic system have the form of Euler’s equations (3.2 ) . Owing to this we say that 
Hamilton’s principle (2.1) for the motion of a nonholonomic system defined by such 
solutions has the characteristics of the principle of stationary action (2.2 ) . 

Note also that when in problem (3.1) the symbol 6 is understood to represent 
variations in the class of possible permutations (1.5 ) of a nonholonomic system , then 

(2.2) coincides with (3. l), provided however that condition 

is satisfied, which happens then and only then when condition (3.4) is satisfied with 
(1.10 > taken into account. 

For relationships of the form (1.3) equality (3.4) reduces to conditions 

FXlA:+‘:--0 (S=l,...,li) 

(3.5) 

A particular form of conditions (3.5) in the problem of rolling a heavy solid body 
on a horizontal absolutely rough plane appeared in [ 111. 

It has thus been shown that for Hamilton ‘s principle (2.1) for a nonholonomic 
system to have the characteristics of the principle of stationary action it is necessary 
and sufficient that condition (3.4 ) or, what is the same, condition (3.5) is satisfied. 

Note that Hamilton ‘s principle in the form (2.9) obtained by Suslov has also the 
characteristics of the principle of stationary action (2.2 ) then and only then when the 

condition 

is satisfied. Since in that formula ha are arbitrary and independent, it is satisfied 

only when 

(s = I,. . ., k) (3.6) 

For motions that satisfy conditions (3.6) Voronets ‘equations (2.6) are of the form 
of equations of motion of nonholonomic systems, 

We stress that conditions (3.4) - (3.6) are seldom satisfied in the case of non- 
holonomic systems. Two examples are given below. In the first , these conditions are 

satisfied by the general solution, and in the second only for some particular solutions of 
equations of motion of a nonholonomic system (in the latter Hamilton ‘s principle has 
the characteristics of the principle of stationary action, not for all but only for related 
motions of the nonholonomic system ) , Examples can be given of nonholonomic sys - 
tern for which these conditions are generally not satisfied [ 8 1. 



416 V. V. ibmiantsev 

EX a m p 1 e 3.1. In Appel ‘s example (Example 
off2.3) and (1.1) 

1.1) from equations of the form 

we have 
d 

i 

G’ 
z- v-91-2+ 42’2 1 =o (h-=1,2) 

which shows that conditions (3.4) - (3.6 ) are satisfied for all motions of the point. 

E x a m pl e 3.2. For a disk (Example 1. 2 ) the Lagrange function is 

L = $ {[z’ - a (cos 0 sin CpB’ _i- sin e cos cpcp’)]’ + 

[y’ + a (co9 0 cos (p8’ - sin 0 sin cpv’)]*} + 

$. A (e-2 + p ~0~2 8) + + c (4’ + cp* 8in e)2- mga cos e 

Taking into account relationships, conditions (3.6 ) assume the form 

which are satisfied either when 0‘ = 0 or rP’ = $’ = 0. It can be shown [ 111 that 

then conditions (3.5 ) are also satisfied. Hence in the case of motion of a disk whose 

plane is at constant angle to the vertical, as well as some highly special motions for 
which v’ = 9’ = 0, Hamilton ‘s principle has the characteristics of the principle of 

stationary motion, while generally this is not so. 

4. The use of I-Iamilton ‘s principle for determining the stationarity of action in 
the case of real motions is closely related to the problem of extending to nonholonomic 

systems the Hamilton -Jacobi method of integration of canonical equations of motion 

lffl. n/r 
L=-.-.-, 

dp. ai, 2=---L_ 
z 

afl 
(4.1) 

iii ‘Pi , 3 a9i ’ pt api* - (i= f,..*,Ii) 
1 

that are equivalent to Eqs. (2.3 ) and (1.1). 
As usual, the generalized momenta 

pi .= a/,/aqi’ (i = 2,. . ., n) 

and the Hamiltonian 

Ii (9, F* t, = 5 pigi’ -- jr, 
is1 (4.2) 

In essence the Hamilton --Jacobi method consists of the following C4.5 J. 
Variables 
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f 

% = Pi f xl afl kq=- (i = 1, . . ., n) 

I=1 

(4.3 ) 

are introduced and used for reducing formula (4.2) to the form 

L=i~ni4;-Hl (4.4) 

where function 

(4.5) 

is obtained by the substitution into its right-hand side of functions 

111 67, Jr, t) 

pr (q, n, t), and 

derived from Eos II (X.1 ) and (4.3 ) and of the first group of Eqs. (4.1) . 
It is advisable to construct function (4.5) as follows. Using (1.3) represent the 

Lagrange fUI'ICtiOn in the form L’* (ql,. . . , q,,, ql’,. . ., qr’, 1) = 9 + U and in - 
traduce in the analysis the generalized momenta and the Hamiltontan 

(4.6) 

(4.7) 

Function (4.7 ) is related to function (4.2) by the formula 

ffY (Q1 p, t) = H (47 PI 0 + 2 *c+1(2 3 gs’ - cpl) 
I=1 s=1 

(4. S ) 

Since equalities (4.3 > imply for relationships (1.3 ) the equalities 

function (4.5 ) with allowance for (4.8 ) assumes the form 

The generalized Hamilton -Jacobi equation 

~+&(qi, $, t)=O 
2 

(4.9) 

is an equation in partial derivatives of the first order whose characteristic equations are 
of the canonical form 
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dqi a~, dni arr, 
dt --q-’ dt= -- (i=I,...,N) aQi 

(4.10) 

According to Jacobi ‘s theorem the relationships 

aS/aqi = Xi. as/aai = pi (i= 1,. . ., u) 

represent 2n integrals of Eqs .(4.1O) if S (Pi9 ai, r) is a &mplete integral 

of Eq. (4.12) with arbitrary constants ai and & , 
It was shown in [ 5 ] that the solution of Eqs. (4. 10 ) is also a solution of equations 

of motion (4.1) if and only if it satisfies the condition 

6qi = 0 (4.11) 

Hence (4.11) is a necessary and sufficient condition for the considered generalized 
Hamilton -Jacobi method to be applicable to nonholonomic systems. 

Note that another form of the necessary and sufficient conditions of applicability 
to nonholonomic systems of the potential method of integration was proposed by 

Arzhanykh [ 13 1. 

Condition (4.11) with (1.5 ) taken into account follows from equations [ 5 ] 

obtained by differentiating expressions (4.3) with respect to t on the basis of (4. 10 ) . 
When hr = Xr (I = 1,. . ., I) Eqs. (4.12 ) evidently match Euler’s equations (3.2 ) 
of the variational problem (3.1). 

Hence the generalized Hamilton -Jacobi method of integrating Eqs. (4.1) of 

motion of nonholonomic systems is applicable if and only if Hamilton’s principle has 
the characteristics of the principle of stationary action, 

Motions of a nonholonomic system that satisfy condtions (4. 11) are defined by 

Hamilton ‘s canonical equations (4. 10) whose corollary is the principle of stationary 
action 

which with allowance for (4.4 ) is equivalent to the principle (2.2 ) . 

Example 4.1. The equations of motion in Appel’s example [ 41 and the 

equations of motion of disk in the case of 8’ = O were integrated in [ 141 by the 

Hamilton -Jacobi method. It can be shown that condition (4.11) obtained here is 
not satisfied for a gyroscope suspended in gimbals and constrained by the relationship 
(3.86) described in [4]. Because of this the solution proposed in [4] does not satisfy 
the equations of motion of a gyroscope. 
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